Geometrical Constructions

Engineering Graphics and Design (BTME-101-21)

TO BISECT A STRAIGHT LINE

(i) Draw a given straight line $A B$.
(ii) With centre A and radius greater than half $A B$, draw arcs on either side of $A B$.
(iii) With centre B and same radius, draw arcs intersecting the above arcs at C and
D.
(iv) Draw a line joining C and D to interest the given line $A B$ at E. The point E bisects the line $A B$ and the line $C D$ is called the perpendicular bisector of the line $A B$, as shown in Fig. 1

Fig. 1 To bisect a straight line

Fig. 2 To bisect an arc Fig. 2.

TO DIVIDE A LINE

(a) To divide a given straight line into a specified number of equal parts, say six Method I
(i) Draw the given line $A B$.
(ii) Through A, draw a line $A C$, making an acute angle with $A B$.
(iii) From A and along $A C$, lay off six equal divisions of any convenient length with a compass as shown in Fig. 3.
(iv) Draw a line joining 6' and B.
(v) With the help of mini-draughter, draw lines through $1^{\prime}, 2^{\prime}, 3^{\prime}$ etc. parallel to $6^{\prime} B$ to meet the line $A B$ at 1, 2, 3..... etc. The points 1, 2, 3 etc. divide the line $A B$ into six equal parts.

Fig. 3 To divide a line into a number of equal parts (Method I)

Method II

(i) Draw the given line $A B$.
(ii) Draw $A C$ and $B D$ at the same angle ϑ to $A B$ ($A C$ is parallel to $B D$).
(iii) Mark the required number of equal divisions (say six) of any suitable length on $A C$ and $B D$.
(iv) Join 111', 212^{\prime} etc. which interests the line $A B$ into six equal parts. See Fig. 4.

Fig. 4 To divide a line into a number of equal parts (Method II)
(b) To divide a given straight line into unequal parts
(i) Draw a given straight line $A B$.
(ii) Erect perpendicular $A D$ and $B C$ at the points A and B respectively. Complete square or rectangle $A B C D$.
(iii) Draw the diagonals $A C$ and $B D$ intersecting at E.
(iv) Through E, drop a perpendicular to $A B$, meeting the mid-point F of the line $A B$.
(v) Join D and F. The line meets the diagonals $A C$ at G and then draw a perpendicular from G to $A B$. ($A H=1 / 3 A B$).
(vi) Similarly, for obtaining 1/4 AB and 1/5 AB, make constructions as shown in Fig. 5.

Fig. 5 To divide a line proportionately

TO DRAW A LINE PARALLEL TO A GIVEN STRAIGHT LINE

(a) To draw a line parallel to a given straight line through a given point
(i) Draw a given straight line $A B$ and P be the given point.
(ii) With P as centre and any convenient radius, draw an arc $C D$ cutting $A B$ at Q.
(iii) With Q as centre and same radius, draw an arc cutting $A B$ at R.
(iv) Again, with Q as centre and same radius equal to $R P$, draw an arc to interect $C D$ at
S.
(v) Draw a straight line through P and S. Then the line PS is the required parallel line. See Fig. 6.

Fig. 6 To draw a line parallel to a given straight line through a given point
(b) To draw a line parallel to and at a given distance from a given straight line
(i) Draw a given straight line $A B$ and ' x ' be the given distance.
(ii) Take two points C and D on a given line $A B$ at a suitable distance apart.
(iii) With C and D as centres, draw arcs on one side of $A B$ with ' x ' as radius.
(iv) Draw a line PQ just to touch the top surface of the two arcs. Then the line $P Q$ is the required parallel line. See Fig. 7.

Fig. 7 To draw a line parallel to and at a given distance from a given straight line

TO CONSTRUCT REGULAR POLYGONS

(a) To construct a regular pentagon, given the length of side

Method I

(i) Draw a line $A B$ equal to the given length of side (ii) Bisect $A B$ at P.
(iii) Draw a line $B Q$ perpendicular and equal to $A B$ at point B.
(iv) With centre P and radius $P Q$, draw an arc intersecting $A B$ produced at R.
(v) Then $A R$ is the length of the diagonal of the pentagon.
(vi) With centres A and B and radii equal to $A R$ anc $A B$ respectively, draw arcs intersecting at point C.
(vii) With centres A and B and radius $A R$, draw arc: intersecting at point D.
(viii) Again with centres A and B and radii equal to $A B$ and $A R$ respectively, draw arcs intersecting at point E.
(ix) Draw lines $A B, B C, C D, D E$ and $E A$, thus completing the regular pentagon. See Fig. 8.

Method II

(i) Draw a line $A B$ equal to the given length of side.
(ii) With centre A and radius $A B$, draw a circle and mark it as circle .
(iii) Similarly with centre B and the same radius, draw a circle and mark it as circle cutting circle at P and Q.
(iv) With centre P and the same radius, draw an arc to cut circle and circle at R and S respectively.
(v) Draw a perpendicular bisector of the line $A B$ to cut the arc RS at G.
(vi) Draw a line RG and produce it to cut circle at C.
(vii) Similarly, draw a line SG and produce it to cut circle at E.
(viii) With C and E as centres and $A B$ as radius, draw arcs intersecting each other at D. (ix) Draw lines $A B, B C, C D, D E$ and $E A$, thus completing the regular pentagon. See Fig. 9.

Fig. 9 Construction of a regular pentagon (Method II)

Method III

(i) Draw a line $A B$ equal to the given length of the side.
(ii) Draw an angle of 54° at each point A and B, meeting at point 0 .
(iii) With centre O and radius $O A$ or $O B$, draw a circle.
(iv) With centre B and radius $A B$, draw an arc intersecting the circle at point C.
(v) Similarly with centre A and radius $A B$, draw an arc intersecting the circle at point E.
(vi) With C and E as centres and radius $A B$, draw arcs intersecting each other at point D on the circle.
(vii) Draw lines $A B, B C, C D, D E$ and $E A$, thus completing the regular pentagon. See Fig. 10.

Fig. 10 Construction of a regular pentagon (Method III)
(b) To construct a regular hexagon, given the length of side

Method I

Draw a line $A B$ equal to the given length of the side.
(ii) With centre A and radius $A B$, draw a semicircle.
(iii) Divide the semi-circle into the same number of equal parts as the number of sides n (i.e. six).
(iv) Draw radial lines through 2, 3, 4, 5, etc.
(v) With centre B and radius $A B$, draw an arc intersecting the radial line through 5 at C. (vi) With centre C and radius $A B$, draw an arc intersecting the radial line through 4 at D. (vii) Repeat this procedure till the point on the radial line through 3 is obtained.
(viii) Draw lines $A B, B C, C D, D E$ etc., thus completing the regular hexagon. See Fig. 11.

Fig. 11 Construction of a regular hexagon (Method I)

Method II

(i) Follow the same steps from (i) to (iv) as discussed above.
(ii) Draw perpendicular bisectors of lines $2 A$ and $A B$, intersecting at point O.
(iii) With centre O and radius $O A$, draw a circle passing through the points 2 and B.
(iv) Locate the corners C, D etc. of the polygon where the circle meets the radial lines.
(v) Draw lines $A B, B C, C D$ etc., thus completing the regular hexagon. See Fig. 12.

Fig. 12 Construction of a regular hexagon (Method II)

Method III

(i) Draw a line $A B$ equal to the given length of the side.
(ii) Draw an angle of 60° at each point A and B, meeting at point 0 .
(iii) With centre O and radius $O A$ or $O B$, draw a circle.
(iv) With centre B and radius $A B$, draw an arc intersecting the circle at point C.
(v) Similarly with centres A and C and same radius $A B$, draw arcs intersecting the circle at points F and D respectively.
(vi) With centres D and F and radius $A B$, draw arcs intersecting each other at point E on the circle.
(vii) Draw lines $A B, B C, C D$ etc., thus completing the regular hexagon. See Fig. 13.

Fig. 13 Construction of a regular hexagon (Method III)

(c) General Method for drawing any polygon

(i) Draw a line $A B$ equal to the given length of side.
(ii) At B, draw a line BP perpendicular and equal to $A B$.
(iii) Draw a line joining A with P.
(iv) With centre B and radius $A B$, draw the quadrant AP.
(v) Draw the perpendicular bisector of $A B$ to intersect the straight line AP in 4 and the arc $A P$ is 6. (vi) A square of a side equal to $A B$ can be inscribed in the circle drawn with centre 4 and radius A4. (vii) Locate the mid-point of the line 4-6 and number it 5.
(viii) Along the bisector, locate the points 7, 8 etc., such that the distances $4-5=5=6=6-7$ etc.
(ix) A regular pentagon of side equal to $A B$ can be inscribed in the circle drawn with centre 5 and radius A5.
(x) Similarly, a regular hexagon of side equal to $A B$ can be inscribed in the circle drawn with centre 6 and radius A6. A polygon of any number of sides, N can be inscribed in a circle drawn with

Fig. 14 Construction of a regular polygon (General Method) centre N and radius AN. See Fig. 14.

TO DRAW TANGENTS

(a) To draw a tangent to a given circle at any point on it
(i) With centre O, draw the given circle and mark the given point P on it. (ii) Join O with P and extend it.
(iii) Draw a perpendicular $T T$ to the above line at point P. The line $T T$ is the required tangent. See Fig. 15.
(b) To draw a tangent to a given circle from any point outside the circle
(i) With centre O, draw the given circle. (ii) Locate the given point P outside it.
(iii) Join O and P and locate its mid-point A.
(iv) With centre A and radius $A O$, draw an arc to intersect the given circle at B and C.
(v) Join P to B and P to C and extend it.

The lines $P B$ and $P C$ arer the two possible tangents. See Fig. 16.

Fig. 15 Tangent to a circle at a point on it

Fig. 16 Tangent to a circle from an outside point
(c) To draw a tangent to a given arc of inaccessible centre at any point on it
(i) Draw a given arc $A B$ and locate the given point P on it.
(ii) With centre P and any suitable radius, draw an arc to intersect the given arc at C and D.
(iii) Draw perpendicular bisector EF of the chord CD passing through P.
(iv) Through P, draw a line GH perpendicular to EF. Thus GH is the required tangent.

See Fig. 17.

Fig. 17 Tangent to an arc having inaccessible centre

INSCRIBED CIRCLES

(a) To inscribe a circle in a given triangle
(i) Let $A B C$ be the triangle.
(ii) Bisect any two angles by lines intersecting each other at O.
(iii) Draw a perpendicular from O to any one side of the triangle, meeting at P.
(iv) With centre O and radius OP, draw the required circle. See Fig. 18.
(b) To inscribe a circle in a regular polygon of any number of sides, say a hexagon
(i) Let $A B C D E F$ be the hexagon.
(ii) Bisect any two angles by lines intersecting each other at O.
(iii) From O, draw a perpendicular to any one side of the hexagon cutting it at P.
(iv) With centre O and radius OP, draw the required circle. See Fig. 19.

Fig. 18 Construction of a circle in a given triangle

Fig. 19 Construction of a circle in a regular hexagon

